A pr 2 00 1 BINARY CONSTRAINED FLOWS AND SEPARATION OF VARIABLES FOR SOLITON EQUATIONS
نویسنده
چکیده
In contrast to mono-constrained flows with N degrees of freedom, binary constrained flows of soliton equations, admitting 2 × 2 Lax matrices, have 2N degrees of freedom. By means of the existing method, Lax matrices only yield the first N pairs of canonical separated variables. An approach for constructing the second N pairs of canonical separated variables with additional N separated equations is introduced. The Jacobi inversion problems for binary constrained flows are then established. Finally, the separability of binary constrained flows together with the factorization of soliton equations by the spatial and temporal binary constrained flows leads to the Jacobi inversion problems for soliton equations.
منابع مشابه
Constructing Soliton Solutions of Geometric Flows by Separation of Variables
This note surveys and compares results in [12] and [21, 22] on the separation of variables construction for soliton solutions of curvature equations including the Kähler-Ricci flow and the Lagrangian mean curvature flow. In the last section, we propose some new generalizations in the Lagrangian mean curvature flow case.
متن کاملStudy of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model
Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملNewtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches
Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...
متن کاملSteady Flow Through Modeled Glottal Constriction
The airflow in the modeled glottal constriction was simulated by the solutions of the Navier-Stokes equations for laminar flow, and the corresponding Reynolds equations for turbulent flow in generalized, nonorthogonal coordinates using a numerical method. A two-dimensional model of laryngeal flow is considered and aerodynamic properties are calculated for both laminar and turbulent steady flows...
متن کامل